Comparison of gas use efficiency and treatment uniformity in a forest ecosystem exposed to elevated [CO2] using pure and prediluted free-air CO2 enrichment technology
ثبت نشده
چکیده
A direct comparison of treatment uniformity and CO2 use of pure and prediluted free-air CO2 enrichment (FACE) systems was conducted in a forest ecosystem. A vertical release pure CO2 fumigation system was superimposed on an existing prediluted CO2 fumigation system and operated on alternate days. The FACE system using prediluted CO2 fumigation technology exhibited less temporal and spatial variability than the pure CO2 fumigation system. The pure CO2 fumigation system tended to over-fumigate the upwind portions of the plot and used 25% more CO2 than the prediluted CO2 fumigation system. The increased CO2 use by the pure CO2 system was exacerbated at low wind speeds. It is not clear if this phenomenon will also be observed in plots with smaller diameters and low-stature vegetation.
منابع مشابه
Elevated [CO2] and forest vegetation: more a water issue than a carbon issue?
Studies of responses of forest vegetation to steadily increasing atmospheric concentrations of CO2 have focussed strongly on the potential of trees to absorb extra carbon; the effects of elevated [CO2] on plant–soil water relations via decreased stomatal conductance and increased ambient temperature have received less attention, but may be significant in the long term at the ecosystem level. CO...
متن کاملResponses of a loblolly pine ecosystem to CO2 enrichment: a mo
(FACE) facilities represents a substantial advance in experimental technology for studying ecosystem responses to elevated CO2. A challenge arising from the application of this technology is the utilization of short-term FACE results for predicting long-term ecosystem responses. This modeling study was designed to explore interactions of various processes on ecosystem productivity at elevated C...
متن کاملAtmospheric Co2 and O3 Alter the Flow of N in Developing Forest Ecosystems
Anthropogenic O3 and CO2-induced declines in soil N availability could counteract greater plant growth in a CO2-enriched atmosphere, thereby reducing net primary productivity (NPP) and the potential of terrestrial ecosystems to sequester anthropogenic CO2. Presently, it is uncertain how increasing atmospheric CO2 and O3 will alter plant N demand and the acquisition of soil N by plants as well a...
متن کاملContrasting responses of forest ecosystems to rising atmospheric CO2: Implications for the global C cycle
[1] In two parallel but independent experiments, Free Air CO2 Enrichment (FACE) technology was used to expose plots within contrasting evergreen loblolly pine (Pinus taeda L.) and deciduous sweetgum (Liquidambar styraciflua L.) forests to the level of CO2 anticipated in 2050. Net primary production (NPP) and net ecosystem production (NEP) increased in both forests. In the year 2000, after expos...
متن کاملLong-term CO2 enrichment of a forest ecosystem: implications for forest regeneration and succession.
The composition and successional status of a forest affect carbon storage and net ecosystem productivity, yet it remains unclear whether elevated atmospheric carbon dioxide (CO2) will impact rates and trajectories of forest succession. We examined how CO2 enrichment (+200 microL CO2/L air differential) affects forest succession through growth and survivorship of tree seedlings, as part of the D...
متن کامل